Drinfel’d double for monoidal Hom-Hopf algebras

نویسندگان

چکیده

We mainly construct a bicrossproduct for finite-dimensional monoidal Hom-Hopf algebra $(H,\alpha )$, generalizing Majid’s bicrossproduct. Naturally, the Hom-type leads to Drinfel’d double $(H^{\rm op}\bowtie H^{\ast },\alpha \otimes (

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hom-lie Admissible Hom-coalgebras and Hom-hopf Algebras

The aim of this paper is to generalize the concept of Lie-admissible coalgebra introduced in [2] to Hom-coalgebras and to introduce Hom-Hopf algebras with some properties. These structures are based on the Hom-algebra structures introduced in [12].

متن کامل

Hom - Algebras and Hom

The aim of this paper is to develop the theory of Hom-coalgebras and related structures. After reviewing some key constructions and examples of quasi-deformations of Lie algebras involving twisted derivations and giving rise to the class of quasi-Lie algebras incorporating Hom-Lie algebras, we describe the notion and some properties of Homalgebras and provide examples. We introduce Hom-coalgebr...

متن کامل

Hopf algebras, tetramodules, and n-fold monoidal categories

This paper is an extended version of my talk given in Zürich during the Conference “Quantization and Geometry”, March 2-6, 2009. The main results are the following. 1. We construct a 2-fold monoidal structure [BFSV] on the category Tetra(A) of tetramodules (also known as Hopf bimodules) over an associative bialgebraA. According to an earlier result of R.Taillefer [Tai1,2], Ext q Tetra(A)(A,A) i...

متن کامل

Hom-tensor Relations for Two-sided Hopf Modules over Quasi-hopf Algebras

For a Hopf algebra H over a commutative ring k, the category MH of right Hopf modules is equivalent to the category Mk of k-modules, that is, the comparison functor −⊗k H : Mk → MH is an equivalence (Fundamental theorem of Hopf modules). This was proved by Larson and Sweedler via the notion of coinvariants McoH for any M ∈ MH . The coinvariants functor (−) coH : MH → Mk is right adjoint to the ...

متن کامل

Hom-alternative Algebras and Hom-jordan Algebras

The purpose of this paper is to introduce Hom-alternative algebras and Hom-Jordan algebras. We discuss some of their properties and provide construction procedures using ordinary alternative algebras or Jordan algebras. Also, we show that a polarization of Hom-associative algebra leads to Hom-Jordan algebra. INTRODUCTION Hom-algebraic structures are algebras where the identities defining the st...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Colloquium Mathematicum

سال: 2021

ISSN: ['0010-1354', '1730-6302']

DOI: https://doi.org/10.4064/cm8076-1-2020